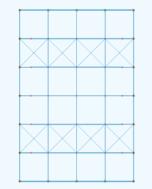
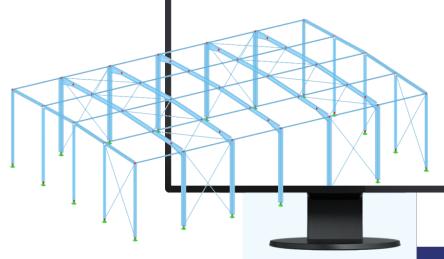
Dlubal

Structural Analysis & Design Software

Dipl.-Ing. (FH) Andreas Hörold Organizer

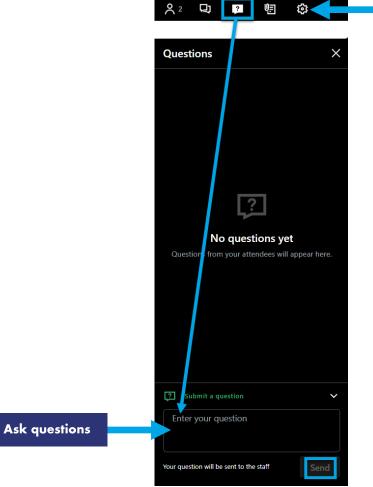
Marketing & Public Relations Dlubal Software GmbH

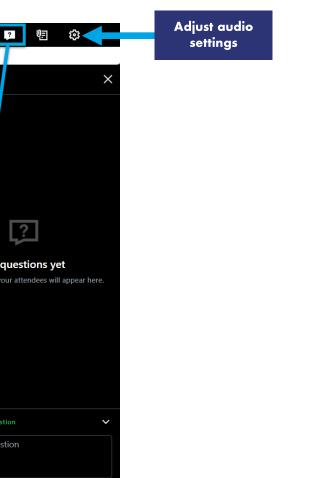

Dipl.-Ing. (BA) Sandy Matula Co-Organizer


Customer Support Dlubal Software GmbH

Part 6 | Introduction to Steel Design

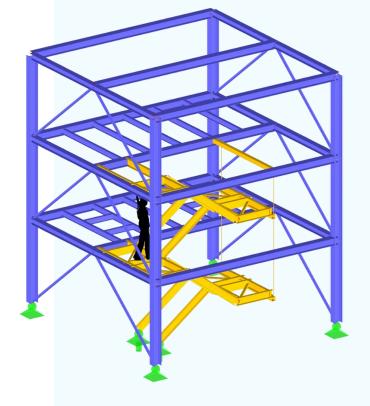
RFEM 6 for Students


Questions During the Presentation



GoToWebinar Control Panel **Desktop**

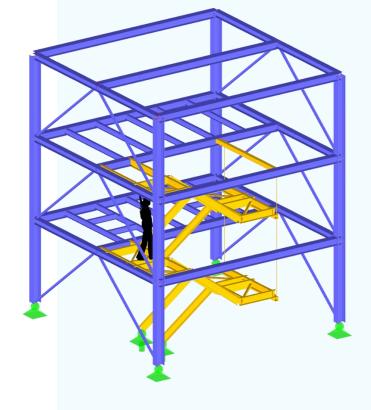
E-mail: info@dlubal.com



Training Series

01 Introduction to Member D)esign
-----------------------------	--------

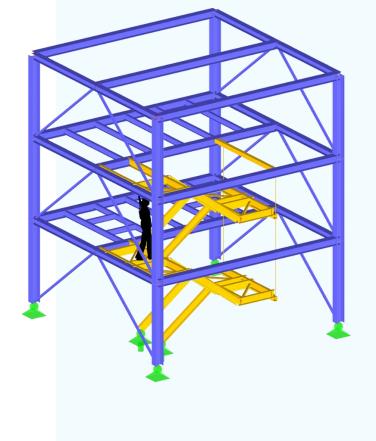
- **02** Introduction to Strength of Materials
- 03 Introduction to FEM / FEA
- 04 Introduction to Timber Design
- **05** Introduction to Reinforced Concrete Design
- **06** Introduction to Steel Design



Training Series

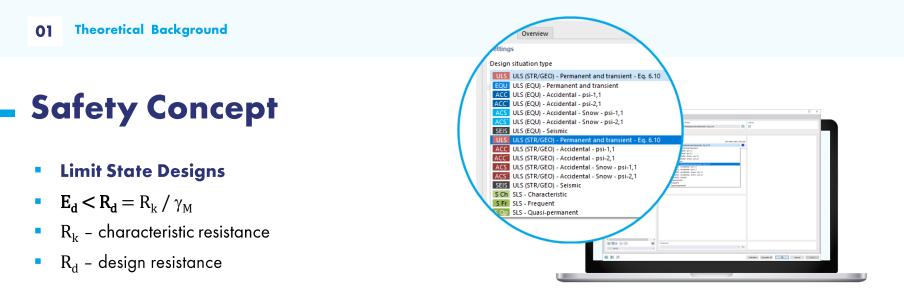
01	Introduction to Member Design

- **02** Introduction to Strength of Materials
- 03 Introduction to FEM / FEA
- 04 Introduction to Timber Design
- 05 Introduction to Reinforced Concrete Design
- 06 Introduction to Steel Design



CONTENT

01 Theoretica	l Background
---------------	--------------


- 02 Introductory Example: Two-span beam
- 03 Imperfections
- **04** Stability proofs in the ULS
- 05 Example: Flat hall frame

Products for Design according to Eurocode 3

Factor of	llenne	EN 19	93-1-1	DIN EN 1993-1-1/NA						
safety	Usage	FUN	ACC	FUN	ACC					
γ _{м0}	Cross-section design	1.0	-	1.0	1.0					
γ_{M1}	Stability analysis	1.0	-	1.1	1.0					
γ _{M2}	Failure due to tension	1.25	-	1.25	1.15					

Dluba


Dluba

怸

Elastic or Plastic global analysis

сс	1	2	3	4						
Moment- Rotation Behavior	M M,pl M,el	M M,pl M,el Ø	M M,pl M,el	M M,pl M,el						
Rotation capacity	high	low	_	_						
Global Analysis	Р	Е	Е	Е						
Cross-Section Resistance	Р	Р	Е	E*						

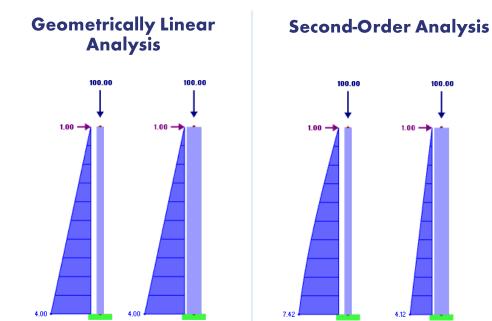
Two-span beam

Information

- Beam: IPE 550, S235
- Geometry: see image
- Self-Weight: LC1: $g_k = 8,00 \text{ kN/m}$
- Imposed Load: LC2: q_k = 12,00 kN/m

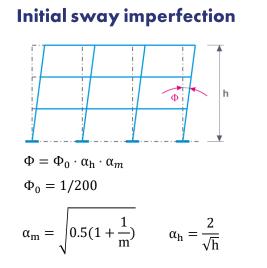
Tasks

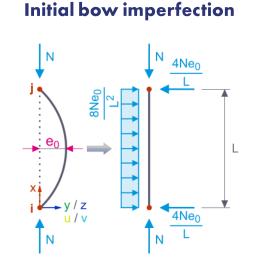
- Cross-Section Classification
- Cross-Section Design Checks
- Difference between elastic and plastic cross-section resistance
- Design check: EL-EL and EL-PL

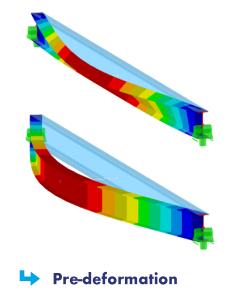

Effects of deformed geometry of the structure

Criterion

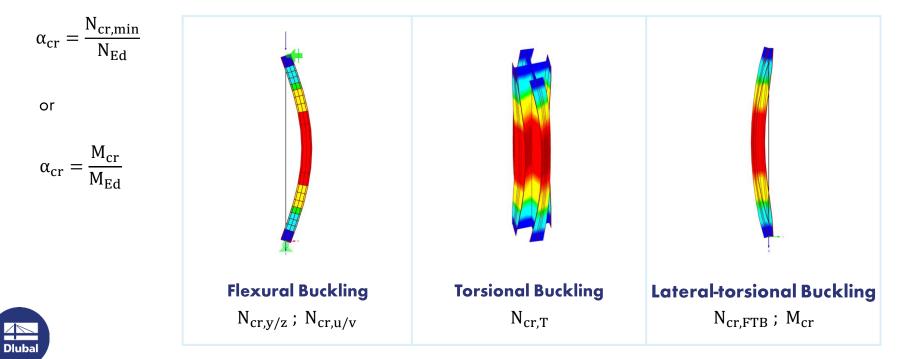
 $\alpha_{cr} = \frac{F_{cr}}{F_{Ed}}$


Geometrically linear analysis is sufficient if

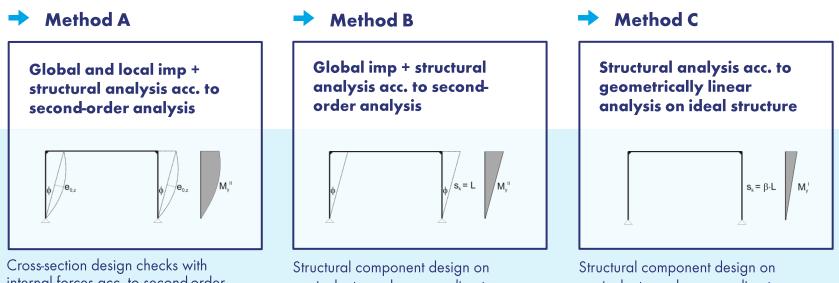

 $\alpha_{cr} > 10$ for elastic global analysis $\alpha_{cr} > 15$ for plastic global analysis



Equivalent geometric imperfections



怸


ONLINE TRAINING

Stability Analysis

13

Methods for Stability Analysis

Cross-section design checks with internal forces acc. to second-order analysis

Dluba

Structural component design on equivalent member according to Section 6.3 but with s_k=member length Structural component design on equivalent member according to Section 6.3

Flat Hall Frame

																					- - -	3	- 1	HEE PE HEE	45	0	ł	- Y		
1	^	ſ								Ì																		1		
	- 00:8-																													
										•									•											
	¥.									_	×																			
		4	•							ţ.																		╇		
				_	 	 12.000)	 	 	2		 	 	 - 15.0	000	 -	 	 	-		 	12.0	000					->-		
Ī		×																												
z																											A	bmessu	ungen	m]

Information

- Cross-Sections: see image
- Material: S235
- H= 8m; L1= 12m; L2= 15m; L3= 12m
- LC1 | Self-Weight: active
- LC2 | Snow: $s_{kinner} = 20 \text{ kN}$; $s_{kouter} = 10 \text{ kN}$
- LC3 | Wind: $w_{kl} = 2 \text{ kN/m}; w_{kr} = 1 \text{ kN/m}$

Tasks

- Apply Imperfections
- Stability analysis according to method B and method C

Free Online Services

Geo-Zone Tool

Dlubal Software provides an online tool with snow, wind and seismic zone maps.

T-Profile, T-Profile aus Stahl

With this free online tool, you can select standardized sections from an extensive section library, define parametrized cross-sections and calculate its cross-section properties.

-R.

FAQs & Knowledge Base

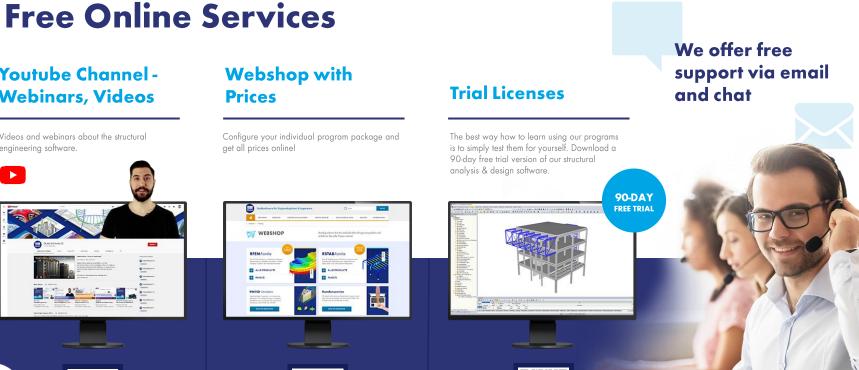
Access frequently asked questions commonly submitted to our customer support team and view helpful tips and tricks articles to improve your work.

Models to Download

Download numerous example files here that will help you to get started and become familiar with the Dlubal programs.

16

怸


4 Dlubal

Videos and webinars about the structural engineering software.

Youtube Channel -

Webinars, Videos

Webinar

Get Further Details About Dlubal

Visit website www.dlubal.com

- Videos and recorded webinars
 - Newsletters
 - Events and conferences
- Knowledge Base articles

See Dlubal Software in action in a webinar Download free trial license

Dlubal Software GmbH Am Zellweg 2, 93464 Tiefenbach, Germany Phone: +49 9673 9203-0 E-mail: info@dlubal.com

www.dlubal.com