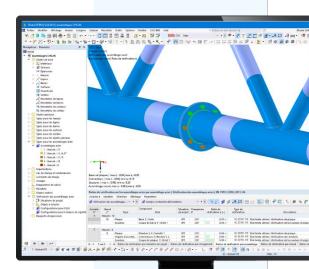


Logiciels de calcul de structure

M.Eng. Damien Taunay
Organisateur

Ingénieur Support technique Dlubal Software Sarl



M.Eng. Milan Gérard
Co-Organisateur

Ingénieur Support technique Dlubal Software Sarl

Webinaire

Nouveautés dans RFEM 6 et RSTAB 9

Questions pendant le webinaire

Fenêtre GoToWebinar Bureau

E-mail: info@dlubal.fr

File View Help ⊕+

▼ Audio

Afficher/Masquer

_ 🗆 🗗 🗙

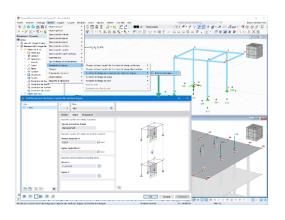
淤

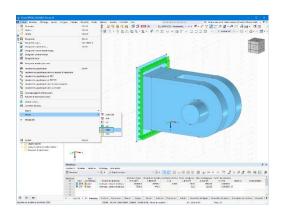
CONTENU

- O1 Nouvelles fonctionnalités dans RFEM 6 et RSTAB 9
- Nouvelles fonctionnalités dans les modules et programmes autonomes
- 03 Nouveaux modules
- **04** Perspectives

Fonctionnalités

Transfert des forces d'appui d'un autre modèle


- Assistant de charge « Importer des réactions d'appui »
- Transfert des réactions d'appuis comme des charges nodales ou linéiques
- Basé sur un concept de liste d'éléments



Nouvelles interfaces d'échange

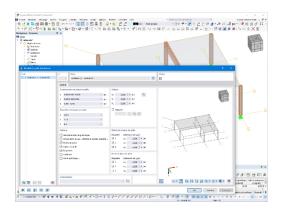
- Tekla Structures
- STEP
- ALLPLAN (*.asf)
- SVG (image vectorielle)

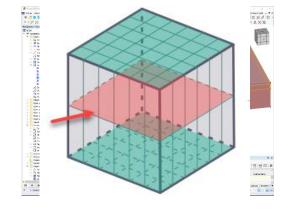
WEBINAIRE

淤

Fonctionnalités

Grille de bâtiment


- Saisie intuitive des coordonnées de grilles et des étiquettes des lignes
- Option de cotation intégrée
- Aperçu de la grille directement dans la boîte de dialogue



Maillage EF en couches pour les solides

Division du solide en couches d'éléments finis entre deux surfaces opposées et parallèles

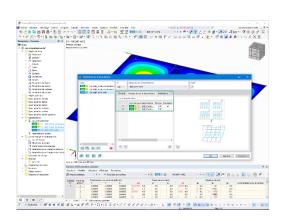
Plus d'informations

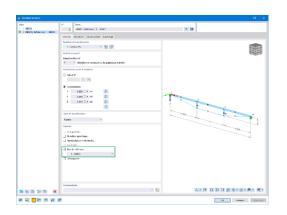
Fonctionnalités

Superposition de plusieurs cas d'imperfections géométriques

Par exemple pour les analyses GMNIA* (analyse de flambement/voilement)

Plus d'informations

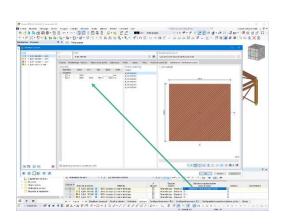

Blocs avec spécification de bloc de référence

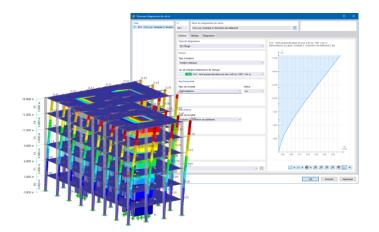

- Définition d'un bloc de référence pour plusieurs blocs identiques
- Transfert des modifications du bloc de référence aux « blocs enfants »

$\overset{\sim}{\sim}$

Fonctionnalités

Optimisation des sections

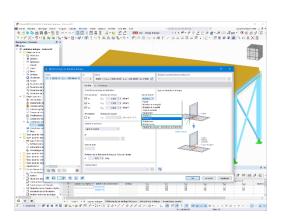

- Disponible dans les modules de vérification de l'acier, du bois, etc.
- Pour les sections standardisées ou paramétriques
 - Plus d'informations


Type de diagramme de calcul « 2D | Étage »

- Création de diagrammes de résultats selon les axes du bâtiment
- Permet par ex. de visualiser les efforts sismiques sur la hauteur du bâtiment

$\overset{\sim}{\sim}$

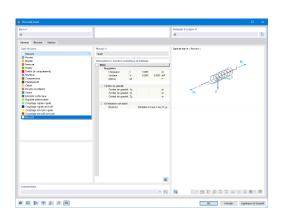
Fonctionnalités


Propriétés de friction pour les libérations linéiques


- Considération de la notion de friction entre deux composants le long d'une ligne
 - Plus d'informations

Type de charge « Formation de poches »

- Analyse de l'écoulement et de la formation de poche d'eau
- La poche d'eau se traduit par une charge verticale
- Par exemple pour des toiles presque à l'horizontale
 - Plus d'informations



☆

Fonctionnalités

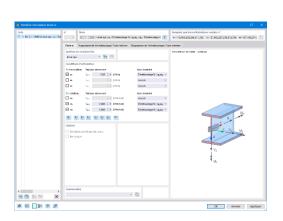
Type de barre « Ressort »

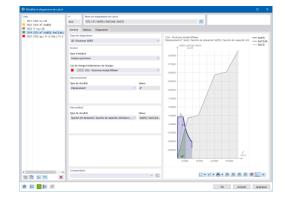
- Simulation des propriétés linéaires et non linéaires d'un ressort à l'aide d'une barre
- Définition de raideur en unité force/déplacement
 - Plus d'informations

Création de combinaison avec plusieurs états initiaux

- Considération de plusieurs états initiaux (précontrainte, recherche de forme, déformation, etc.)
- Idéale par ex. pour le calcul d'un cas de charge qui se base sur une analyse de recherche de forme avec des imperfections

Fonctionnalités


Articulation de type échafaudage


La non-linéarité « Échafaudage N | φy, φz » pour les articulations de barre pour la simulation d'un assemblage tubulaire d'échafaudage.

Plus d'informations

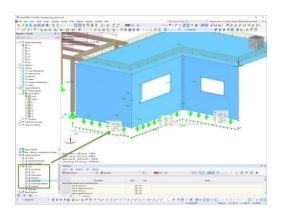
Diagrammes de résultats pour les articulations

- Visualisation des résultats d'une articulation par le biais d'un diagramme de résultats
- Visualisation de la variation de charge par exemple dans une analyse pushover ou d'historique de temps

$\overset{\sim}{\sim}$

Fonctionnalités

Modification des sections dans RFEM/RSTAB via RSECTION


- Connexion directe à RSECTION
- Ouverture de RSECTION via RFEM/RSATB pour la modification d'une section
 - Plus d'informations

The second secon

Bulles d'information pour les appuis linéiques

- Affichage d'informations : description, somme, valeur moyenne, etc.
- Activation dans le Navigateur Résultats
 - Plus d'informations

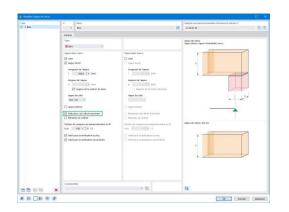
WEBINAIRE

淤

Fonctionnalités

Calculs dans le Cloud

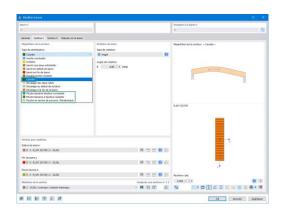
- Externalisation du calcul sur un serveur de calcul en cloud
- Choix entre différents serveurs de calcul puissants
- Calcul n'impactant pas les capacités de votre ordinateur
- Affichage clair de toutes les requêtes de calcul dans l'Extranet

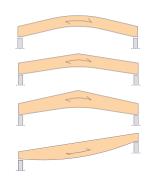


Fonctionnalités (Bois)

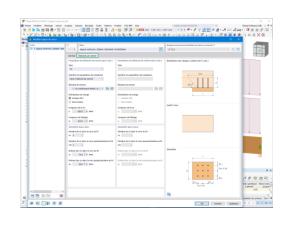
Réduction de l'effort tranchant

- Réduction de l'effort tranchant pour les appuis de calcul de type « Bois »
- Considération de l'effort tranchant déterminant à l'extrémité de la zone d'appui


Distributions de sections de type courbes


Pour des poutres en bois lamellé-collé :

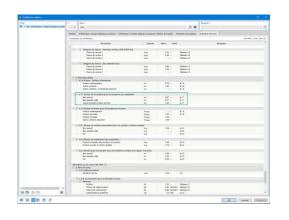
- Courbe
- Poutre banane à hauteur constante
- Poutre banane à hauteur variable
- Poutre en ventre de poisson | Parabolique


Fonctionnalités (Bois)


Éléments de renfort à la compression perpendiculaire pour les appuis de calcul

- Définition de vis entièrement filetées comme éléments de renfort à la compression pour la vérification à la « Compression perpendiculaire au fil »
- Vérification des vis à l'enfoncement et au flambement
- Vérification à la « Compression perpendiculaire au fil » des appuis renforcés

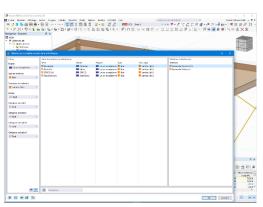
Matinale (FR)



Module Vérification du bois

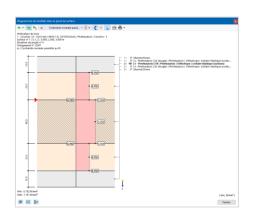
Considération du facteur de fissuration k_{cr} pour les surfaces

L'effet négatif des fissures sur la résistance au cisaillement est considéré


Vérification des barres en lamibois (LVL) selon l'EN 1995-1-1

Fabricants:

- Pollmeier (BauBuche)
- Mestä (Kerto LVL)
- STEICO
- Stora Enso

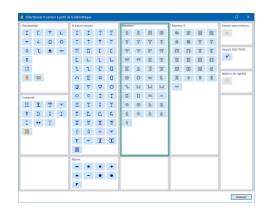


☆

Module Vérification du bois

Vérification de la résistance au feu des surfaces en bois

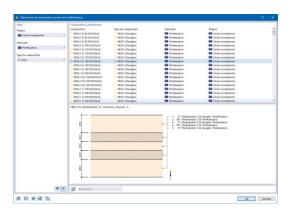
- Calcul selon la méthode de la section réduite
- Option sur l'adhérence des couches pour les panneaux en bois lamellé-croisé (CLT)



Plus de fonctionnalités

- SIA 265 (Norme Suisse): Vérification des sections de Type « Massive I »
- Implémentation de l'AS 1720 (Norme Australienne)
- Vérification des panneaux CLT selon les normes suivantes :
 - > SIA 265 : 2021-05 (Norme Suisse)
 - > ANSI/AWC NDS:2018 (Norme Américaine)
 - CSA O86-19 (Norme Canadienne)

淤

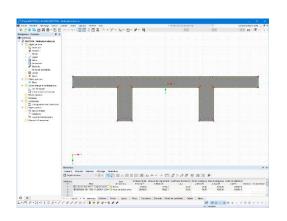

Module Surfaces multicouches

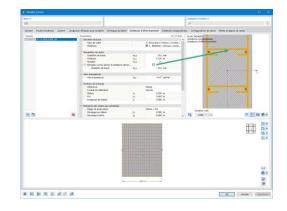
Bibliothèque de panneau en bois lamellé-croisé (CLT)

Compositions de panneaux des fabricants :

- Piveteaubois
- KLH
- Stora Enso
- Schilliger
- Binderholz
- CLT CH
- Derix
- Martinsons
- Pfeifer
- Södra
- Theurl
- Zublin Timber
- ... et plusieurs références pour les Etats-Unis et le Canada

Module Vérification du béton


Calcul des sections provenant de RSECTION


- Définition de l'enrobage du béton, les armatures longitudinales et d'effort tranchant directement dans RSECTION
- Récupération des sections dans RFEM 6 ou RSTAB 9
 - Plus d'informations
 - **Webingire**

Armatures de type « Épingles » pour les vérifications EC 2

- Positionnement des épingles supplémentaires entre les armatures longitudinales sur les poutres en béton
- Considération des épingles pour les vérifications à l'ELU et pour la vérification des armatures secondaires

Module Vérification du béton

Vérification du béton fibré

- Vérification à partir de l'EN 1992-1-1 et selon les directives allemandes DAfStb sur le béton fibré
 - Plus d'informations
 - **Webingire**

Vérification à la fatigue selon le l'EN 1992-1-1, 6.8

De méthodes ou niveaux de calcul peuvent être sélectionnés :

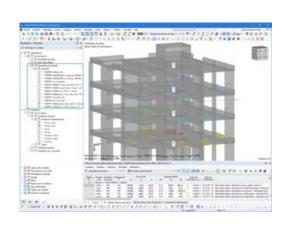
- Calcul simplifié selon 6.8.6 et 6.8.7(2)
- Calcul de la contrainte équivalente vis à vis de l'endommagement selon 6.8.5 et 6.8.7(1) (vérification à la fatigue simplifiée)

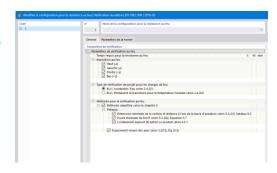
Module Vérification du béton

Analyse sismique selon l'EC 8 pour les barres en béton armé

La vérification inclut les fonctionnalités suivantes :

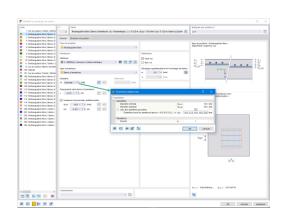
- Configurations pour l'analyse sismique
- Différenciation entre les classes de ductilité DCL, DCM, DCH
- Possibilité de transférer le coefficient de comportement de l'analyse dynamique, etc.
- Vérifications de la capacité de « Poteau fort poutre faible »




Webingire

Vérification simplifiée de la résistance au feu selon l'EN 1992-1-2 pour les poteaux (5.3.2) et les poutres (5.6)

- Poteaux : Dimensions minimales des sections rectangulaires ou circulaires selon le tableau 5.2a et l'équation 5.7 pour le calcul de la durée d'exposition au feu
- Poutre : Dimensions minimales et distance à l'axe selon les tableaux 5.5 et 5.6



Module Vérification du béton

Vérification des armatures surfaciques

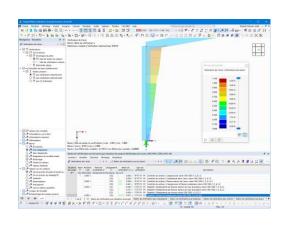
- Ferraillage automatique pour couvrir les armatures requises
- Définition de la liste des diamètres et des espacements possibles

Plus de fonctionnalités

- Modification multiple des armatures de barres (définition pour plusieurs barres ou ensemble de barres en même temps)
- Calcul des armatures requises pour l'ELS (Contraintes limites, Armatures minimales, diamètre et espacement pour les fissures indirectes avec contrôle)
- Impression des graphiques d'armatures via les modèles d'impression

Nouvelles fonctionnames dans les modules et programmes dotonomes

Module Vérification de l'acier


Vérification des sections formées à froid

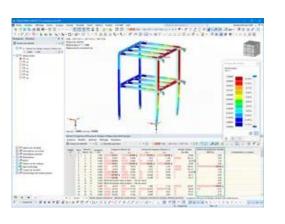
Normes et codes :

- EN 1993-1-3 (Eurocode)
- AISI S100 (USA)
- CSA S136 (Canada)

Webingire

Nouveaux codes et normes

- SIA 263 (Suisse)
- NBR 8800 (Brésil)
- AISC 341-16 (Calcul sismique américain)

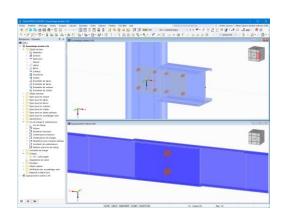


Module Stabilité de la structure

Facteur de pertinence modale pour l'analyse de stabilité

- Evaluation du taux de contribution des éléments à un mode propre spécifique
- Distinction facile des modes propres locaux et globaux
- Détermination des longueurs efficaces équivalentes de composants structuraux spécifiques

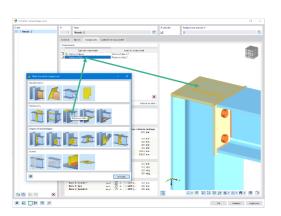
Plus d'informations



Module Assemblages acier

Vérification des assemblages en acier pour les profilés reconstitués et à parois minces

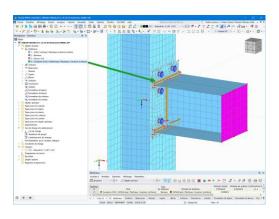
Normes : Eurocode 3, ANSI/AISC 360

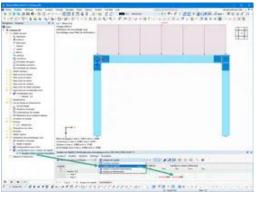


Nouveaux composants

- Plaque de connexion
- Éditeur de barre
- Barre insérée
- Solide auxiliaire
- Platine en tête

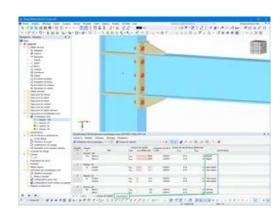
Module Assemblages acier


Modèle de matériau plastique pour la vérification des soudures


- Modèle de matériau «Orthotrope | Plastique | Soudure (surfaces)»
- Calcul plastique de toutes les composantes de contrainte
 - Plus d'informations

Calcul de la rigidité initiale Sj,ini

- Définition en fonction des efforts internes N, My et Mz
- Affichage de la rigidité avec en positif et négatif.
 - Plus d'informations

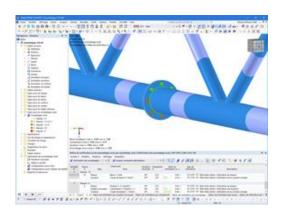

Module Assemblages acier


Classification des assemblages acier selon leur rigidité

- Classification affichée dans le tableau comme « rigide », « semi-rigide » et « articulée »
 - Plus d'informations

Boulons précontraints pour assemblages acier

- Option de précontrainte dans les paramètres des boulons pour tous les composants
- Effets sur l'analyse contrainte-déformation et l'analyse de rigidité.
 - Plus d'informations

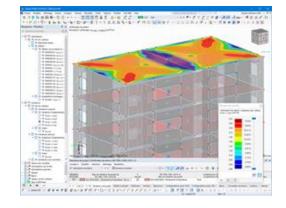


淤

Module Assemblages acier

Assemblages des sections creuses circulaires

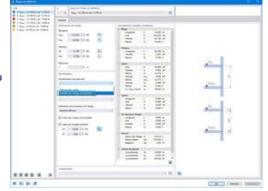
- Assemblages soudés
- Assemblages par platines
 - Plus d'informations


Module Modèle de bâtiment

Analyse des planchers en tant que système 2D isolé

Le modèle est calculé en deux temps :

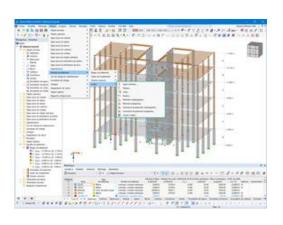
- Calcul 3D global de l'ensemble du modèle, dans lequel les planchers sont modélisés en tant que plan rigide (diaphragme) ou en tant que plaque en flexion
- Calcul 2D local des différents planchers



Type d'étage « Transfert de charge uniquement »

- Considération des planchers sans effet de rigidité dans et hors du plan
- Récupération pour l'étage des charges sur la dalle et leur transfert aux éléments porteurs du modèle 3D

Module Modèle de bâtiment


Outils de modélisation pour Modèles de bâtiment

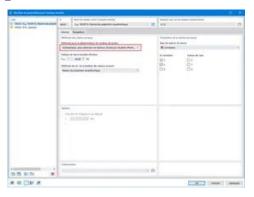
- Ligne verticale
- Poteau
- Voile
- Poutre
- Plancher rectangulaire
- Plancher polygonal
- Ouverture de plancher rectangulaire
- Ouverture de plancher polygonal

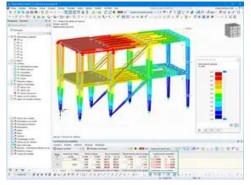
Plus de fonctionnalités

- Voile de cisaillement : Définition automatique de poutres résultantes
- Définition de poutres-voiles
- Générateur d'étage de bâtiment

Module pour les analyses dynamiques

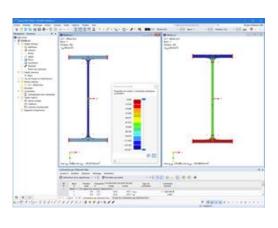
Méthode automatique pour atteindre le facteur de masse modale effective choisi


- Augmentation automatiquement du nombre de valeurs propres à calculer jusqu'à ce que le facteur de masse modale effective soit atteint
- Possibilité d'atteindre facilement les 90% de masse modale effective requise lors de l'analyse modale



Coefficient de sensibilité (Modèle de bâtiment)

- Pour l'analyse du spectre de réponse des modèles de bâtiments
- Tableau d'affichage des coefficients de sensibilité pour les directions horizontales par étage
- Chiffres clés pour interpréter la sensibilité aux effets de stabilité



淤

RSECTION 1

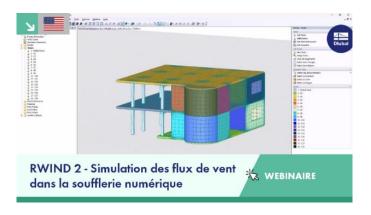
Résistance plastique avec variation des contraintes de cisaillement

- Utilisation des réserves de redistribution pour la « Vérification de la capacité plastique | Méthode du simplexe »
- Distribution des contraintes de cisaillement dans l'aire de la section
- Particulièrement adapté pour les analyses de section soumises à des charges de cisaillement
 - Plus d'informations

RWIND 2

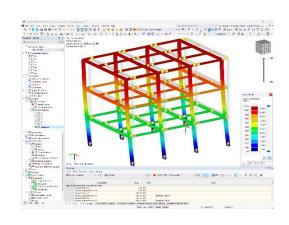
Affichage des résultats de RWIND directement dans RFEM 6

- Pression surfacique
- Coefficient de surface Cp
- Distance à la paroi y+ (flux stationnaire)


The state of the s

Plus de fonctionnalités

- Génération de zones selon les numéros de surface de RFEM
- Support pour les données de vérification/expérimentales
- Nouvelle fonction d'échelle pour l'optimisation de la soufflerie
- Affichage des valeurs max et min à chaque pas de temps


Analyse pushover

Analyse de la capacité de déformation des systèmes nonlinéaire

- Considération du comportement réel dans l'analyse sismique
- Considération de toutes les non-linéarités
- Définition du spectre de réponse par l'utilisateur ou selon la base de données
- Estimation des capacités du système dans le domaine non linéaire
- Évaluation via des diagrammes pour une meilleure compréhension

☆

Analyse d'historique de temps

Analyse dynamique des structures pour des excitations externes

- Analyse selon des diagrammes de temps et des accélérogrammes
- Possibilité de paramétrer et calculer plusieurs analyses d'historique de temps en même temps
- Option de superposition de plusieurs charges avec diagrammes de temps dans les combinaisons de charges, mais aussi possibilité de combinaison avec des cas de charges statiques
- Affichage des résultats dans la partie graphique, les tableaux et les diagrammes de calcul
- Enveloppe de résultat (max / min) sur le temps total d'analyse

Fonctionnalités prévues (2023)

- Interface d'échange avec Autodesk Revit 2023
- Interface d'échange avec Tekla Structures
- Transfert de charge (forces d'appui)
- Modèle de bâtiment (transfert de charge)
- Analyse temporelle pour les accélérogrammes
- Analyse pushover
- Traitement en cloud
- Considération des quantités de précipitation
- Analyse non-linéaire du béton
- Calcul de la résistance au feu du béton
- Calcul de fondation
- Calcul de vitrage
- Calcul des assemblages acier des sections creuses circulaires
- Détermination des patrons de coupes pour les membranes
- Lignes directrices

Fonctionnalités prévues (2023)

- Interface d'échange avec Autodesk Revit 2023
- Interface d'échange avec Tekla Structures
- Transfert de charge (forces d'appui)
- Modèle de bâtiment (transfert de charge)
- Analyse temporelle pour les accélérogrammes
- Analyse pushover
- Traitement en cloud
- Considération des quantités de précipitation
- Analyse non-linéaire du béton
- Calcul de la résistance au feu du béton
- Calcul de fondation
- Calcul de vitrage
- Calcul des assemblages acier des sections creuses circulaires
- Détermination des patrons de coupes pour les membranes
- Lignes directrices

• ..

Fonctionnalités prévues (2024)

- Analyse non-linéaire du béton
- Vérification des fondations en béton
- Vérification du verre
- Détermination des patrons de coupe pour les membranes
- Calcul des murs à ossature bois
- Console pour le code Python
- Assemblages acier : outils de dimensionnement, prise en compte de la rigidité, pieds de poteau
- Suppression partielle des résultats
- Charges mobiles
- Convertir les forces d'appui en charges libres
- Combinaisons pour les ponts
- Type de barre « amortisseur »
- Poulies
- Globalité des résultats RWIND dans RFEM

- Analyse d'historique de temps non-linéaire
- Appui pour échafaudage
- Diaphragme semi-rigide
- Assemblages bois
- Maillage indépendant
- Vérification du béton : articulation (pushover), ferraillage automatique des barres, protection au feu : méthode par zone, définition des armatures existantes au poinconnement
- RSECTION : Soudures
- Amélioration de l'analyse plastique
- Nouvelles normes pour les structures en acier et en bois
- Calcul de soufflerie numérique dans le cloud
- Python: interface avec BricsCad, Excel, DSTV, SDNF
- IA chatbot
- ...

WEBINAIRE

Services en ligne gratuits

Geo-Zone-Tool

Dlubal Software met à la disposition des utilisateurs un outil de géolocalisation en ligne des zones de neige, de vent et de sismicité.

Propriétés de sections

Cet outil en ligne gratuit vous permet de sélectionner des profilés standards à partir d'une vaste base de données ou de définir des sections paramétriques et de calculer leurs propriétés.

FAQs & Base de connaissance

Trouver les questions fréquemment posées à notre équipe du support technique ainsi que des conseils et astuces utiles dans nos articles techniques pour améliorer votre efficacité.

Modèles à télécharger

Vous trouverez ici un grand nombre d'exemples de modèles qui vous aideront à utiliser et à vous familiariser avec les programmes Dlubal.

Services en ligne gratuits

Chaîne Youtube, webinaires, vidéos

Regardez les vidéos et webinaires sur les logiciels de calcul de structures de Dlubal.

Boutique en ligne

Configurez votre progiciel et consultez tous les prix en ligne!

Version d'essai

La meilleure facon de découvrir nos programmes est de les tester. Téléchargez la version d'essai de 90 jours de nos programmes d'analyse structurelle.

Plus d'informations sur Dlubal

Site internet www.dlubal.fr

- → Vidéos et webingires
- → Newsletters
- **Évènements et** conférences
- Articles de la base de connaissance

Formez-vous grâce aux webinaires

Téléchargez les versions d'essais

Dlubal Software SARL 32, Rue de Cambrai 75019 Paris France

Tél.: +33 9 80 40 58 20 E-mail: info@dlubal.fr

www.dlubal.fr